
Math 1A Midterm 1 Review Answers

Complete solutions are shown for all questions except those marked.
The missing work for those questions is strictly numeric or algebraic.
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[17] [a] If the refrigerator temperature is C4 , the meat will defrost in 6 hours.

[b] If the refrigerator temperature is C4 , the meat will defrost 1 hour sooner for each C1 increase in the refrigerator’s
temperature.

[c] No. The defrost time should always decrease if the refrigerator temperature increases. The meat will always defrost faster in a
warmer refrigerator.
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Since f is differentiable at 4x , therefore f is continuous at 4x (by the “differentiability implies continuity” theorem).
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